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Background & Introduction

The huge amount of data produced by sequencing genomes has produced many
di�erent possible relationships between organisms, as expressed using phylogenetic
trees. In order to compare the various trees, one needs to be able to describe the
variability of these trees. The various plausible trees can be thought of as arising
from a random walk in the collection of all possible trees of life.[1]

The project will limit the analysis to the relationships between a small number
of species. For the shapes of the non-degenerate evolutionary trees from 5 to 10
species, we focused on their adjacencies and produced the transition matrices around
the connections, the eigenvalues and eigenvectors of which were used in the following
parts. [2]

In the simulations of real evolution data, we took the model of exponential growth
with / without dying. The trees we considered were rooted with a single ancestor.

Aims

• To work out the tree space of 10 species

• By taking the dot product of the distribution from the data of a real evolution
and the eigenvectors from the adjacency matrices, one can tell which growth
model the data might resemble and therefore estimate the growth rate.

Materials

The number of shapes of the rooted trees is much more than the unrooted trees
when generating the same number of species and every rooted tree belongs to a family
of a particular shape of unrooted tree.

There are various ways of inserting a root into an unrooted tree so that the number
of shapes of di�erent rooted trees is much more than the unrooted ones. Given n
species, the whole space of all possible collection of combinations consists of
(2n−5)!! = (2n−5)∗(2n−7)∗(2n−9) · · · 3∗1 di�erent unrooted trees. For 10 species,
there are 98 possible rooted trees but only 11 geometries of unrooted evolutionary
trees in the space of more than 2 million trees.

In general, the number of tree shapes grows like the square root of n factorial and
so quickly becomes computationally di�cult.

# species # shapes of unrooted trees rooted trees size of tree space
3 1 1 1
4 1 2 3
5 1 3 15
6 2 6 105
7 2 11 945
8 4 23 10,395
9 6 46 135,135
10 11 98 2,027,025

General Methods

Unrooted evolutionary trees of n species
are built up from triangulating a polygon
with n edges. The `evolution' starts from
a fully degenerate `star' shape. Every
step would split the species more than the
previous status and create a new internal
edge. Triangulation procedure �nishes
with a non-degenerate tree, where the
polygon is divided into (n− 3) triangles.

A hexagon can be triangulated as above,
where the 6 red edges represent the 6
species.

A complete tree space of n taxa consists
of m triangles/tetrahedra of (n − 3)
dimension, where m is the total number
of possible unrooted trees formed by n
generated species. Each edge / surface is
shared by 3 triangles / tetrahedra, which
indicates a neighboured degenerate tree.
Each single tree, with speci�c order of
species and internal edge lengths, can be
expressed by a point inside the tree space.

The space of random walk we consider
can be discrete / continuous; bounded
/ unbounded; cubical / triangular etc,
all with di�erent controlled parameters.
Di�erent properties of random walk will
be applied in suitable cases.

Applications on 10 Generated Species

A non-degenerate evolutionary tree of n species has (n−3) internal edges and (n−
2) internal vertices of degree 3. A random walk is generated by the following method:
when the length of one internal edge shrinks to 0, the tree becomes degenerate with 6
non-zero internal edges and one internal vertex with degree 4. By 2-2-splitting the 4
edges joined to that vertex and by extending the new internal edge, the tree becomes
non-degenerate again. A diagram of adjacencies (as shown below) can be encoded
in a matrix of probabilities which produce the random walk, whose eigenvalues and
eigenvectors will be used in estimating di�erent models of evolution.

As shown above, the 11 shapes of unrooted trees can be classi�ed into 4 groups
diagonally by the number of `Y-ends' in each graph. It is impossible to move from
one tree to another when their numbers of `Y-ends' are di�er by 2 or 3. Every rooted
tree belongs to a family of unrooted tree, which will be used in further results and
analysis.

Results

In the coalescent model of evolution,
the trees are built from the timeline of
branching. Tree shapes are predicted by
the time to coalescence. Inductive steps
are taken to separate the species at the
bottom. [3]

In the model of doubling, the number of
species grows exponentially with a growth
rate of 100% in each generation. The
analysis is to select n species randomly
from the �nal generation (generate n
leaves at the bottom of a binary tree).

By taking the dot product of the eigenvectors from the S10-invariant random walk
and the theoretical distribution vectors from the two models of evolution, we obtain
the two sets of angles as below:

Cosine values of angles
from dot products:

⇐= Coalesecnt Model:
-0.8858, -0.3641, -0.2407, -0.1498,

0.0121, -0.1110, -0.0259, 0.0011,

0.0065, -0.0185, 0.0040

Doubling Model: =⇒
-0.7818, -0.5015, -0.3017, 0.1126,

0.0415, -0.1542, -0.0577, -0.0075,

0.0418, -0.0445, 0.0291

Discussion

• In the random walk, the unrooted tree could reach higher degenerate level (with
less than n− 4 internal edges. This can only happen in the discrete model. In
this case, the random walk would have more freedom than those in continuous
model.

• 3-fold symmetry only exists in the unrooted trees when the number of species
is a multiple of 3, but does not exist in rooted binary trees. Such repeated
calculations may a�ect the �nal result.

Conclusion

• Evolutionary trees can be simulated by a random walk on the tree space.

• For certain �xed species, converting rooted trees to unrooted ones will be used
for further analysis.

• By working on the transition matrices and comparing probability distributions
of di�erent evolution models, the eigenvectors and eigenvalues will provide
information to di�erent geometries. These will also be applied to real data.
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